Laplacian regularized low rank subspace clustering
نویسندگان
چکیده
The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which decomposes the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and gross errors. Also, the clustering results of the low rank representation model can be enhanced by using a graph of data similarity. This model is called Laplacian regularized low rank representation model with a graph regularization term added to the objective function. Inspired from the above two ideas, in this paper a Laplacian regularized low rank subspace clustering model is proposed. This model uses a clean dictionary to represent the data points and a graph regularization term is also incorporated in the objective function. Experimental results show that, compared with the traditional low rank representation model, low rank subspace clustering model and several other state-of-the-art subspace clustering models, the model proposed in this paper can get better subspace clustering results with lower clustering error.
منابع مشابه
Iterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering
Multi-view spectral clustering, which aims at yielding an agreement or consensus data objects grouping across multi-views with their graph laplacian matrices, is a fundamental clustering problem. Among the existing methods, Low-Rank Representation (LRR) based method is quite superior in terms of its effectiveness, intuitiveness and robustness to noise corruptions. However, it aggressively tries...
متن کاملMulti-level Low-rank Approximation-based Spectral Clustering for image segmentation
Spectral clustering is a well-known graph-theoretic approach of finding natural groupings in a given dataset, and has been broadly used in image segmentation. Nowadays, High-Definition (HD) images are widely used in television broadcasting and movies. Segmenting these high resolution images presents a grand challenge to the current spectral clustering techniques. In this paper, we propose an ef...
متن کاملSubspace clustering using a symmetric low-rank representation
In this paper, we propose a low-rank representation with symmetric constraint (LRRSC) method for robust subspace clustering. Given a collection of data points approximately drawn from multiple subspaces, the proposed technique can simultaneously recover the dimension and members of each subspace. LRRSC extends the original low-rank representation algorithm by integrating a symmetric constraint ...
متن کاملScalable Nuclear-norm Minimization by Subspace Pursuit Proximal Riemannian Gradient
Trace-norm regularization plays a vital role in many learning tasks, such as low-rank matrix recovery (MR), and low-rank representation (LRR). Solving this problem directly can be computationally expensive due to the unknown rank of variables or large-rank singular value decompositions (SVDs). To address this, we propose a proximal Riemannian gradient (PRG) scheme which can efficiently solve tr...
متن کاملRank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering
When data is sampled from an unknown subspace, principal component analysis (PCA) provides an effective way to estimate the subspace and hence reduce the dimension of the data. At the heart of PCA is the EckartYoung-Mirsky theorem, which characterizes the best rank k approximation of a matrix. In this paper, we prove a generalization of the Eckart-Young-Mirsky theorem under all unitarily invari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.07488 شماره
صفحات -
تاریخ انتشار 2016